Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials

Identifieur interne : 003886 ( Main/Repository ); précédent : 003885; suivant : 003887

Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials

Auteurs : RBID : Pascal:10-0259207

Descripteurs français

English descriptors

Abstract

Strain-compensated (SC) GalnAs/AlInAs/InP multiple-quantum-well structures and quantum cascade lasers (QCLs) with strain levels of 1% and as high as 1.5% were grown by organometallic vapor phase epitaxy (OMVPE). The structures were characterized by high-resolution X-ray (HRXRD) diffraction and atomic force microscopy (AFM), and narrow-ridge QCL devices were fabricated. HRXRD and AFM results indicate very high quality materials with narrow satellite peaks, well-defined interference fringes, and a step-flow growth mode for 1% SC materials. A marginal broadening of satellite peaks is measured for 1.5% SC structures, but step-flow growth is maintained. QCLs based on a conventional four-quantum-well double-phonon resonant active region design with nominal 1% SC were grown with doping concentration varied from 1 to 4 × 1017 cm-3 in the active region. The performance of ridge lasers under pulsed conditions is comparable to state-of-the-art results for 4.8 μm devices. QCLs with a novel injectorless four-quantum well QCL design and 1.5% SC operated in pulsed mode at room temperature at 5.5 μm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0259207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials</title>
<author>
<name sortKey="Wang, Christine A" uniqKey="Wang C">Christine A. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goyal, Anish" uniqKey="Goyal A">Anish Goyal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ROBIN HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donnelly, Joseph" uniqKey="Donnelly J">Joseph Donnelly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Calawa, Daniel" uniqKey="Calawa D">Daniel Calawa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turner, George" uniqKey="Turner G">George Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanchez Rubio, Antonio" uniqKey="Sanchez Rubio A">Antonio Sanchez-Rubio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lexington, MA 02420-9108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hsu, Allen" uniqKey="Hsu A">Allen Hsu</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name>QING HU</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Williams, B" uniqKey="Williams B">B. Williams</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of California</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University of California</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0259207</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0259207 INIST</idno>
<idno type="RBID">Pascal:10-0259207</idno>
<idno type="wicri:Area/Main/Corpus">004490</idno>
<idno type="wicri:Area/Main/Repository">003886</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Doping</term>
<term>Growth mechanism</term>
<term>Heterojunctions</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium phosphide</term>
<term>Interference fringe</term>
<term>MOVPE method</term>
<term>Multiple quantum well</term>
<term>Nanostructured materials</term>
<term>Phonons</term>
<term>Quantum cascade laser</term>
<term>Quantum wells</term>
<term>Semiconductor lasers</term>
<term>Stress effects</term>
<term>VPE</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Laser cascade quantique</term>
<term>Laser semiconducteur</term>
<term>Puits quantique multiple</term>
<term>Effet contrainte</term>
<term>Méthode MOVPE</term>
<term>Diffraction RX</term>
<term>Microscopie force atomique</term>
<term>Frange interférence</term>
<term>Mécanisme croissance</term>
<term>Puits quantique</term>
<term>Nanomatériau</term>
<term>Phonon</term>
<term>Phosphure d'indium</term>
<term>Dopage</term>
<term>Epitaxie phase vapeur</term>
<term>Hétérojonction</term>
<term>GaInAs</term>
<term>InP</term>
<term>8115K</term>
<term>8110A</term>
<term>8107</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Strain-compensated (SC) GalnAs/AlInAs/InP multiple-quantum-well structures and quantum cascade lasers (QCLs) with strain levels of 1% and as high as 1.5% were grown by organometallic vapor phase epitaxy (OMVPE). The structures were characterized by high-resolution X-ray (HRXRD) diffraction and atomic force microscopy (AFM), and narrow-ridge QCL devices were fabricated. HRXRD and AFM results indicate very high quality materials with narrow satellite peaks, well-defined interference fringes, and a step-flow growth mode for 1% SC materials. A marginal broadening of satellite peaks is measured for 1.5% SC structures, but step-flow growth is maintained. QCLs based on a conventional four-quantum-well double-phonon resonant active region design with nominal 1% SC were grown with doping concentration varied from 1 to 4 × 10
<sup>17</sup>
cm
<sup>-3</sup>
in the active region. The performance of ridge lasers under pulsed conditions is comparable to state-of-the-art results for 4.8 μm devices. QCLs with a novel injectorless four-quantum well QCL design and 1.5% SC operated in pulsed mode at room temperature at 5.5 μm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>312</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WANG (Christine A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOYAL (Anish)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ROBIN HUANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DONNELLY (Joseph)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CALAWA (Daniel)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TURNER (George)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SANCHEZ-RUBIO (Antonio)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HSU (Allen)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>QING HU</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>WILLIAMS (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street</s1>
<s2>Lexington, MA 02420-9108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Laboratory of Electronics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, MA 02139</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of California</s1>
<s2>Los Angeles, CA 90095</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>1157-1164</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000181745330230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0259207</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Strain-compensated (SC) GalnAs/AlInAs/InP multiple-quantum-well structures and quantum cascade lasers (QCLs) with strain levels of 1% and as high as 1.5% were grown by organometallic vapor phase epitaxy (OMVPE). The structures were characterized by high-resolution X-ray (HRXRD) diffraction and atomic force microscopy (AFM), and narrow-ridge QCL devices were fabricated. HRXRD and AFM results indicate very high quality materials with narrow satellite peaks, well-defined interference fringes, and a step-flow growth mode for 1% SC materials. A marginal broadening of satellite peaks is measured for 1.5% SC structures, but step-flow growth is maintained. QCLs based on a conventional four-quantum-well double-phonon resonant active region design with nominal 1% SC were grown with doping concentration varied from 1 to 4 × 10
<sup>17</sup>
cm
<sup>-3</sup>
in the active region. The performance of ridge lasers under pulsed conditions is comparable to state-of-the-art results for 4.8 μm devices. QCLs with a novel injectorless four-quantum well QCL design and 1.5% SC operated in pulsed mode at room temperature at 5.5 μm.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Frange interférence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Interference fringe</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Franja interferencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Phonon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Phonons</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Doping</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Doping</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>VPE</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>GaInAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>American Conference on Crystal Growth and Epitaxy</s1>
<s2>17</s2>
<s3>Lake Geneva, Wisconsin USA</s3>
<s4>2009-08-09</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003886 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003886 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0259207
   |texte=   Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024